98 research outputs found

    Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness

    Get PDF
    Photoluminescence (PL) is investigated as a function of the excitation intensity and temperature for lattice-matched InGaAs/InAlAs quantum well (QW) structures with well thicknesses of 7 and 15 nm, respectively. At low temperature, interface fluctuations result in the 7-nm QW PL exhibiting a blueshift of 15 meV, a narrowing of the linewidth (full width at half maximum, FWHM) from 20.3 to 10 meV, and a clear transition of the spectral profile with the laser excitation intensity increasing four orders in magnitude. The 7-nm QW PL also has a larger blueshift and FWHM variation than the 15-nm QW as the temperature increases from 10 to ~50 K. Finally, simulations of this system which correlate with the experimental observations indicate that a thin QW must be more affected by interface fluctuations and their resulting potential fluctuations than a thick QW. This work provides useful information on guiding the growth to achieve optimized InGaAs/InAlAs QWs for applications with different QW thicknesses

    Enhanced expression of FCER1G predicts positive prognosis in multiple myeloma

    Get PDF
    Background: Multiple myeloma (MM) is the second most common hematologic malignancy worldwide and does not have sufficient prognostic indicators. FCER1G (Fc fragment Of IgE receptor Ig) is located on chromosome 1q23.3 and is involved in the innate immunity. Early studies have shown that FCER1G participates in many immune-related pathways encompassing multiple cell types. Meanwhile, it is associated with many malignancies. However, the relationship between MM and FCER1G has not been studied. Methods: In this study, we integrated nine independent gene expression omnibus (GEO) datasets and analyzed the associations of FCER1G expression and myeloma progression, ISS stage, 1q21 amplification and survival in 2296 myeloma patients and 48 healthy donors. Results: The expression of FCER1G showed a decreasing trend with the advance of myeloma. As ISS stage and 1q21 amplification level increased, the expression of FCER1G decreased (P = 0.0012 and 0.0036, respectively). MM patients with high FCER1G expression consistently had longer EFS and OS across three large sample datasets (EFS: P = 0.0057, 0.0049, OS: P = 0.0014, 0.00065, 0.0019 and 0.0029, respectively). Meanwhile, univariate and multivariate analysis indicated that high FCER1G expression was an independent favorable prognostic factor for EFS and OS in MM patients (EFS: P = 0.006, 0.027, OS: P =0.002,0.025, respectively). Conclusions: The expression level of FCER1G negatively correlated with myeloma progression, and high FCER1G expression may be applied as a favorable biomarker in MM patients

    Stable isotope variations in particulate organic matter and a planktivorous fish in the Yangtze River

    Get PDF
    Temporal and spatial changes in delta(13) C and delta 15 N of particulate organic matter (POM) and Hemiculter leucisculus were studied in the Yangtze River of China. Isotopic signatures of POM showed seasonal variations, which was assumed to be associated with allochthonous organic input and autochthonous phytoplankton growth. delta C-13 of H. leucisculus was 1.1 % higher than that of POM, which suggested that the food source of H. leucisculus was mostly from the POM. A mass balance model indicated the trophic position of H. leucisculus in the food web of Yangtze River was estimated to be 2.0 - 2.1, indicating that this fish mainly feeds on planktonic organic matter, which agreed with previous gut content analysis.Temporal and spatial changes in delta(13) C and delta 15 N of particulate organic matter (POM) and Hemiculter leucisculus were studied in the Yangtze River of China. Isotopic signatures of POM showed seasonal variations, which was assumed to be associated with allochthonous organic input and autochthonous phytoplankton growth. delta C-13 of H. leucisculus was 1.1 % higher than that of POM, which suggested that the food source of H. leucisculus was mostly from the POM. A mass balance model indicated the trophic position of H. leucisculus in the food web of Yangtze River was estimated to be 2.0 - 2.1, indicating that this fish mainly feeds on planktonic organic matter, which agreed with previous gut content analysis

    Type-II GaSb/InAlAs quantum dots grown on InP (001) substrate by droplet epitaxy (Conference Presentation)

    Get PDF
    The GaSb quantum dots (QDs) with type II band alignment have attracted great attention recently. They are predicted to be optimizing active region materials for achieving high efficient intermediate-band solar cells and for obtaining ultra-long storage time for memory cells. In this research, GaSb QDs sandwiched inside InAlAs matrix lattice-matched to InP (001) substrate have been obtained via droplet epitaxy. The droplet epitaxy enable us to achieve low density (~2.6 x 10^9/cm^2) and large size (average height ~6.5nm) for the QDs while the lattice mismatch between the GaSb and InAlAs matrix is only ~4%. PL measurements reveal a type-II band alignment for these GaSb/InAlAs/InP QDs. The PL peak energy of QDs shows a blue-shift of >100 meV when the laser intensity increases by six orders of magnitude. Time-resolved PL measurements further confirm the type-II band alignment for the QDs by showing a maximum carrier lifetime of ~4.5 ns. The abnormal dependence of peak energy of QD PL band on the temperature in together with the special PL decay curve indicate that these GaSb/InAlAs QDs likely have different physics mechanism from common GaSb/GaAs type-II QDs. This study provide useful information for understanding the band structure and carrier dynamics of the GaSb/InAlAs QDs grown on InP surface

    High expression of chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in multiple myeloma

    Get PDF
    The prognosis role of CCT3 in MM and the possible pathways it involved were studied in our research. By analyzing ten independent datasets (including 48 healthy donors, 2220 MM, 73 MGUS, and 6 PCL), CCT3 was found to express higher in MM than healthy donors, and the expression level was gradually increased from MGUS, SMM, MM to PCL (all P <0.01). By analyzing three independent datasets (GSE24080, GSE2658, and GSE4204), we found that CCT3 was a significant indicator of poor prognosis (all P <0.01). KEGG and GSEA analysis showed that CCT3 expression was associated with JAK-STAT3 pathway, Hippo signaling pathway, and WNT signaling pathway. In addition, different expressed genes analysis revealed MYC, which was one of the downstream genes regulated by JAK-STAT3 pathway, was upregulated in MM. This confirms that JAK-STAT3 signaling pathway may promote the progress of disease which was regulated by CCT3 expression. Our study revealed that CCT3 may play a supporting role at the diagnosis of myeloid, and high expression of CCT3 suggested poor prognosis in MM. CCT3 expression may promote the progression of MM mainly by regulating MYC through JAK-STAT3 signaling pathway

    Abnormal photoluminescence for GaAs/Al 0.2 Ga 0.8 As quantum dot - ring hybrid nanostructure grown by droplet epitaxy

    Get PDF
    The optical properties have been investigated for the GaAs/Al0.2Ga0.8As quantum dot-ring hybrid nanostructures grown by droplet epitaxy, in which each nanostructure consists of four quantum dots (QDs) sitting on a distinct ring of GaAs. A blueshift and narrowing of the photoluminescence (PL) spectra along with the nonlinear decay of the time-resolved PL curves of the QDs have been observed. These abnormal PL behaviors are caused by the unique state filling effect correlated with the quantum dot-ring structure feature, which is strongly affected by carrier transfer from smaller dots to larger dots via the wetting ring in the GaAs/Al0.2Ga0.8As hybrid structure

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore